首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4283篇
  免费   572篇
  国内免费   133篇
  2024年   4篇
  2023年   102篇
  2022年   79篇
  2021年   211篇
  2020年   196篇
  2019年   214篇
  2018年   195篇
  2017年   186篇
  2016年   201篇
  2015年   229篇
  2014年   277篇
  2013年   247篇
  2012年   203篇
  2011年   206篇
  2010年   164篇
  2009年   228篇
  2008年   246篇
  2007年   254篇
  2006年   207篇
  2005年   173篇
  2004年   141篇
  2003年   153篇
  2002年   117篇
  2001年   89篇
  2000年   90篇
  1999年   86篇
  1998年   89篇
  1997年   63篇
  1996年   68篇
  1995年   38篇
  1994年   37篇
  1993年   56篇
  1992年   30篇
  1991年   19篇
  1990年   20篇
  1989年   16篇
  1988年   5篇
  1987年   13篇
  1986年   12篇
  1985年   2篇
  1984年   3篇
  1983年   4篇
  1982年   5篇
  1981年   4篇
  1979年   3篇
  1978年   3篇
排序方式: 共有4988条查询结果,搜索用时 15 毫秒
991.
There is little direct evidence for effects of soil heterogeneity and root plasticity on the competitive interactions among plants. In this study, we experimentally examined the impacts of temporal nutrient heterogeneity on root growth and interactions between two plant species with very different rooting strategies: Liquidambar styraciflua (sweet gum), which shows high root plasticity in response to soil nutrient heterogeneity, and Pinus taeda (loblolly pine), a species with less plastic roots. Seedlings of the two species were grown in sandboxes in inter‐ and intraspecific combinations. Nutrients were applied in a patch either in a stable (slow‐release) or in a variable (pulse) manner. Plant aboveground biomass, fine root mass, root allocation between nutrient patch and outside the patch, and root vertical distribution were measured. L. styraciflua grew more aboveground (40% and 27% in stable and variable nutrient treatment, respectively) and fine roots (41% and 8% in stable and variable nutrient treatment, respectively) when competing with P. taeda than when competing with a conspecific individual, but the growth of P. taeda was not changed by competition from L. styraciflua. Temporal variation in patch nutrient level had little effect on the species’ competitive interactions. The more flexible L. styraciflua changed its vertical distribution of fine roots in response to competition from P. taeda, growing more roots in deeper soil layers compared to its roots in conspecific competition, leading to niche differentiation between the species, while the fine root distribution of P. taeda remained unchanged across all treatments. Synthesis. L. styraciflua showed greater flexibility in root growth by changing its root vertical distribution and occupying space of not occupied by P. taeda. This flexibility gave L. styraciflua an advantage in interspecific competition.  相似文献   
992.
An important step in diagnosing local adaptation is the demonstration that phenotypic variation among populations is at least in part genetically based. To do this, many methods experimentally minimize the environmental effect on the phenotype to elucidate the genetic effect. Minimizing the environmental effect often includes reducing possible environmental maternal effects. However, maternal effects can be an important factor in patterns of local adaptation as well as adaptive plasticity. Here, we report the results of an experiment with males from two populations of the poeciliid fish, Heterandria formosa, designed to examine the relative influence of environmental maternal effects and environmental effects experienced during growth and development on body morphology, and, in addition, whether the balance among those effects is unique to each population. We used a factorial design that varied thermal environment and water chemistry experienced by mothers and thermal environment and water chemistry experienced by offspring. We found substantial differences between the two populations in their maternal and offspring norms of reaction of male body morphology to differences in thermal environment and water chemistry. We also found that the balance between maternal effects and postparturition environmental effects differed from one thermal regime to another and among traits. These results indicate that environmental maternal effects can be decidedly population‐specific and, as a result, might either contribute to the appearance of or blur evidence for local adaptation. These results also suggest that local adaptation might also occur through the evolution of maternal norms of reaction to important, and varying, environmental factors.  相似文献   
993.
Variation in relative fitness of competing recently formed species across heterogeneous environments promotes coexistence. However, the physiological traits mediating such variation in relative fitness have rarely been identified. Resting metabolic rate (RMR) is tightly associated with life history strategies, thermoregulation, diet use, and inhabited latitude and could therefore moderate differences in fitness responses to fluctuations in local environments, particularly when species have adapted to different climates in allopatry. We work in a long‐term study of collared (Ficedula albicollis) and pied flycatchers (Ficedula hypoleuca) in a recent hybrid zone located on the Swedish island of Öland in the Baltic Sea. Here, we explore whether differences in RMR match changes in relative performance of growing flycatcher nestlings across environmental conditions using an experimental approach. The fitness of pied flycatchers has previously been shown to be less sensitive to the mismatch between the peak in food abundance and nestling growth among late breeders. Here, we find that pied flycatcher nestlings have lower RMR in response to higher ambient temperatures (associated with low food availability). We also find that experimentally relaxed nestling competition is associated with an increased RMR in this species. In contrast, collared flycatcher nestlings did not vary their RMR in response to these environmental factors. Our results suggest that a more flexible nestling RMR in pied flycatchers is responsible for the better adaptation of pied flycatchers to the typical seasonal changes in food availability experienced in this hybrid zone. Generally, subtle physiological differences that have evolved when species were in allopatry may play an important role to patterns of competition, coexistence, or displacements between closely related species in secondary contact.  相似文献   
994.
When females mate with multiple partners in a reproductive cycle, the relative number of competing sperm from rival males is often the most critical factor in determining paternity. Gamete production is directly related to testis size in most species, and is associated with both mating behavior and perceived risk of competition. Deer mice, Peromyscus maniculatus, are naturally promiscuous and males invest significantly more in sperm production than males of P. polionotus, their monogamous sister‐species. Here, we show that the larger testes in P. maniculatus are retained after decades of enforced monogamy in captivity. While these results suggest that differences in sperm production between species with divergent evolutionary histories can be maintained in captivity, we also show that the early rearing environment of males can strongly influence their testis size as adults. Using a second‐generation hybrid population to increase variation within the population, we show that males reared in litters with more brothers develop larger testes as adults. Importantly, this difference in testis size is also associated with increased fertility. Together, our findings suggest that sperm production may be both broadly shaped by natural selection over evolutionary timescales and also finely tuned during early development.  相似文献   
995.
Organisms featuring wide trait variability and occurring in a wide range of habitats, such as the ovoviviparous New Zealand freshwater snail Potamopyrgus antipodarum, are ideal models to study adaptation. Since the mid‐19th century, P. antipodarum, characterized by extremely variable shell morphology, has successfully invaded aquatic areas on four continents. Because these obligately and wholly asexual invasive populations harbor low genetic diversity compared to mixed sexual/asexual populations in the native range, we hypothesized that (1) this phenotypic variation in the invasive range might be adaptive with respect to colonization of novel habitats, and (2) that at least some of the variation might be caused by phenotypic plasticity. We surveyed 425 snails from 21 localities across northwest Europe to attempt to disentangle genetic and environmental effects on shell morphology. We analyzed brood size as proxy for fitness and shell geometric morphometrics, while controlling for genetic background. Our survey revealed 10 SNP genotypes nested into two mtDNA haplotypes and indicated that mainly lineage drove variation in shell shape but not size. Physicochemical parameters affected both shell shape and size and the interaction of these traits with brood size. In particular, stronger stream flow rates were associated with larger shells. Our measurements of brood size suggested that relatively larger slender snails with relatively large apertures were better adapted to strong flow than counterparts with broader shells and relatively small apertures. In conclusion, the apparent potential to modify shell morphology plays likely a key role in the invasive success of P. antipodarum; the two main components of shell morphology, namely shape and size, being differentially controlled, the former mainly genetically and the latter predominantly by phenotypic plasticity.  相似文献   
996.
The phenotypes of gray treefrog (Hyla chrysoscelis) tadpoles vary depending on whether predators are present in the pond. Tadpoles reared in ponds with predatory dragonfly larvae are relatively inactive compared with tadpoles in predator-free ponds, and have relatively large, brightly colored tailfins with dark spots along the margins. Models for the evolution of plasticity predict that induced phenotypes such as this should confer high fitness relative to the typical phenotype when in the presence of predators, but should be costly when the predator is absent. Our study tested for the predicted fitness trade-off in H. chrysoscelis by first rearing tadpoles in mesocosms under conditions that induce the alternate phenotypes, and then comparing the performance of both phenotypes in both environments. We generated the two phenotypes by rearing tadpoles in 600-liter outdoor artificial ponds that contained either two caged dragonflies (Anax junius) or an empty cage. Tadpoles from the two environments showed significantly different behavior, tail shape, and tail color within two weeks of exposure. We compared the growth and survival of both phenotypes over four weeks in ponds where there was no actual risk of predation. Under these conditions, both phenotypes grew at the same rate, but the predator-induced phenotype had significantly lower survival than the typical phenotype, indicating that induced tadpoles suffered greater mortality from causes other than odonate predation. We tested the susceptibility of both phenotypes to predation by exposing them to dragonflies in 24-h predation trials. The predator-induced phenotype showed a significant survival advantage in these trials. These results confirm that the predator-induced phenotype in H. chrysoscelis larvae is associated with fitness costs and benefits that explain why the defensive phenotype is induced rather than constitutive.  相似文献   
997.
Recent studies of evolution in heterogeneous environments have concentrated on the role of coarse-grained environmental variation. Here I explore the potential for a modular organism to adapt to fine-grained environmental variation through within-individual variation among modules. I describe the pattern of variation among leaves of single individuals and report results of initial analyses of genetic variation for within-individual variability in leaf traits and of genetic correlations that could influence the rate of further evolution of within-individual variation of these traits. Plants from 24 paternal half-sib families were raised in growth chambers, and five traits were measured for two leaves produced by each plant. Four of the five traits differed significantly between sampling times. Genetic analyses revealed significant additive genetic variation for within-individual variation in several traits. Estimates of family mean correlations between traits expressed at different times suggest few relationships that would be expected to impede response to selection for changes in the pattern of within-individual variation in leaf traits. These results support the possibility that within-individual variation could evolve as an adaptive response to fine-grained environmental variation and suggest a need for further investigation to improve understanding of evolution in heterogeneous environments.  相似文献   
998.
We analyzed data on root weight ratio from a range of experimental studies documenting plant allocation changes in response to altered nitrogen availability. Our goal was to determine the degree to which plasticity in allocation between roots and shoots exists and to search for patterns in such plasticity among species. Our survey included 77 studies representing 206 cases and 129 species. As expected, we found that root weight ratio decreased with increased nitrogen availability in the majority of cases examined, and this response was most consistent when plants were grown individually or in intraspecific competition (versus interspecific competition). Surprisingly, however, we found no evidence to support existing hypotheses that fast-growing species adapted to high soil fertilities exhibit the highest levels of morphological plasticity, or that plasticity is positively associated with competitive ability. Rather, we found that average amounts of plasticity in root weight ratio in response to nitrogen availability were similar among species grouped by maximum relative growth rate and habitat fertility. Similar results were obtained for species categorized by life form, life history or root weight ratio itself, and plasticity in root weight ratio also had no consistent relationship with competitive ability. Numerous difficulties are associated with the attempt to search for pattern using independent studies, however our results lead to the conclusion that strong patterns in plasticity of root weight ratio in response to nitrogen availability among species do not exist. We discuss two reasons for this: (1) the costs of plasticity relative to its benefits are lower than previously predicted and (2) plasticity in traits other than root weight ratio is more important to plant foraging ability.  相似文献   
999.
Gene regulation,quantitative genetics and the evolution of reaction norms   总被引:12,自引:0,他引:12  
Summary The ideas of phenotypic plasticity and of reaction norm are gaining prominence as important components of theories of phenotypic evolution. Our understanding of the role of phenotypic plasticity as an adaptation of organisms to variable environments will depend on (1) the form(s) of genetic and developmental control exerted on the shape of the reaction norm and (2) the nature of the constraints on the possible evolutionary trajectories in multiple environments. In this paper we identify two categories of genetic control of plasticity: allelic sensitivity and gene regulation. These correspond generally to two classes of response by the developmental system to environmental change: phenotypic modulation, in which plastic responses are a continuous and proportional function of environmental stimuli and developmental conversion, where responses tend to be not simply proportional to the stimuli. We propose that control of plasticity by regulatory actions has distinct advantages over simple allelic sensitivity: stability of phenotypic expression, capacity for anticipatory response and relaxation of constraints due to genetic correlations. We cite examples of the extensive molecular evidence for the existence of environmentally-cued gene regulation leading to developmental conversion. The results of quantitative genetic investigations on the genetics and evolution of plasticity, as well as the limits of current approaches are discussed. We suggest that evolution of reaction norms would be affected by the ecological context (i.e. spatial versus temporal variation, hard versus soft selection, and fine versus coarse environmental grain). We conclude by discussing some empirical approaches to address fundamental questions about plasticity evolution.  相似文献   
1000.
Summary The formulation of Kawecki and Stearns (1993) adapted for sexual populations is used to characterize lifehistory evolution in spatially heterogeneous environments comprising a number of distinct habitats. Three types of evolutionary outcome/optimal strategy are distinguished, appertaining to populations with phenotypic plasticity, populations without it (here called aplastic) and to populations that are reproductively isolated. In general plastic and isolated optima differ, but do not differ if none of the habitats provide source or sink populations. Plastic, aplastic and isolated optima are calculated and compared in three numerical examples representing trade-offs involving reproductive effort, egg size and defence. Locating the aplastic optimum involves numerical construction of a fitness landscape showing how allelic fitness depends on aplastic strategy and on the relative frequencies of the habitats. In all three examples the aplastic optimum lies between or almost between the plastic optima. In two cases the aplastic optimum switches abruptly between the plastic optima as the relative frequencies of the habitats change, and in the third case the switch is gradual. The abruptness or otherwise of the switch depends on the position and structure of the valleys in the fitness landscape and this in turn depends on how sharply the fitness peaks are differentiated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号